МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ КАЗАХСТАН

Некоммерческое акционерное общество «Казахский национальный исследовательский технический университет имени К.И.Сатпаева»

Школа «Транспортная инженерия и логистика»

ОП «Транспортная инженерия»

допущен к защите

Руководитель ОП

«Транспортная инженерия»,

доктор РНД

Камзанов Н.С. 2025г.

» 06

ДОПУЩЕН К ЗАЩИТЕ

ДИПЛОМНАЯ РАБОТА

На тему: «Модернизация мобильного эстакады на заводе Hyundai Trans Kazakhstan».

6В07108 - Транспортная инженерия

Выполнил

Ибадулла Жанөріс Байқадырұлы

Рецензент

Ассоциированный профессор,

локтор PhD

Бакыт Г.Б.

Į.

Научный руководитель Профессор, кандидат

технических наук

Абуллаев С.С.

04 (1) 06

2025г.

Алмары 2025

Музыетжен Тыный онерное общество

HR Aenapramenti

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ КАЗАХСТАН

Некоммерческое акционерное общество «Казахский национальный исследовательский технический университет имени К.И.Сатпаева»

Школа «Транспортная инженерия и логистика»

ОП «Транспортная инженерия»

6В07108 – Транспортная инженерия

УТВЕРЖДАЮ

Руководитель ОП

«Транспортная инженерия»,

доктор PhD

Камзанов Н.С.

2024

ЗАДАНИЕ

на выполнение дипломной работы

Обучающемуся Ибадулла Жанөріс Байқадырұлы

Тема: «Модернизация мобильного эстакады на заводе Hyundai Trans Kazakhstan».

Утверждена приказом Ректора Университета за №26-П/Ө om 19.01.2025г.

Срок сдачи законченной работы «10» июня 2025г.

Исходные данные к дипломной работе: <u>В работе использованы материалы</u>
<u>производственной практики на заводе Hyundai Trans Kazakhstan, данные отдела контроля</u>
<u>качества, нормативы по проектированию стальных конструкций и документация по</u>
<u>мобильной эстакаде. Выполнены расчёты нагрузок и технико-экономическое обоснование</u>
<u>модернизации.</u>

Краткое содержание дипломной работы:

а) Теоретическая часть.

<u>Рассмотрены современные типы эстакад, дана их классификация и исторический обзор.</u> <u>Проанализированы стационарные и мобильные конструкции на примере завода Hyundai</u> Trans Kazakhstan.

б) Расчетно-технологическая часть.

Проведены расчёты на прочность, прогиб, устойчивость и динамическое воздействие

в) Организационно-технологическая часть.

Предложена схема размещения эстакады в зоне контроля качества и функции инженерного кабинета. Выполнен расчёт нагрузок при эксплуатации.

г) Конструкторская часть.

Разработана компоновка модернизированной эстакады, выполнены чертежи.

Перечень графического материала (с точным указанием обязательных

чертежей): представлены 15 слайдов презентации работы.

Рекомендуемая основная литература: из 17 наименований

ГРАФИК подготовки дипломной работы

Наименование разделов, перечень разрабатываемых	Сроки представления научному	Примечание
вопросов	руководителю	
Обзорная часть	19.01.2025	выполнено
Расчетная часть	11.03.2025	выполнено
Организационная часть и технико- экономические расчеты	06.05.2025	выполнено
Охрана труда и окружающей среды	16.05.2025	выполнено

Подписи

консультантов и нормоконтролера на законченную дипломную работу с указанием относящихся к нему разделов работы

Наименование разделов	Консультанты (И.О.Ф., уч.степень, звание)	Дата подписания	Подпись
Основные разделы дипломной работы	Научный руководитель Профессор, кандидат технических наук Абдуллаев С.С.		Agy
Нормоконтролер	Сарсанбеков К.К. Старший преподаватель		Meds

Научный руководитель _	Stoff	Абдуллаев С.С.	
Задание принял к исполн	ению обучаюі	цийся	Ибадулла Ж.Б.
Дата		"29" 01	2025г

РЕЦЕНЗИЯ

Дипломная работа (наименование вида работы)

Ибадулла Жанөріс Байқадырұлы (Ф.И.О. обучающегося)

6В07108 – Транспортная инженерия (шифр и наименование ОП)

На тему: «Модернизация мобильного эстакады на заводе Hyundai Trans Kazakhstan».

Выполнено:

а) графическая часть на 6—листах б) пояснительная записка на 51 страницах

ЗАМЕЧАНИЯ К РАБОТЕ

Дипломная работа выполнена в соответствии с выданным заданием. Графическая часть оформлена согласно конструкторским требованиям. В расчетно-пояснительной записке рассмотрены вопросы проектирования и модернизации эстакады, приведены технические характеристики, выполнен патентно-литературный обзор и расчеты основных параметров механизмов.

В качестве замечания: на чертежах имеются неточности в обозначении шероховатости и размеров.

Оценка работы

Дипломная работа полностью выполнена, указаны все необходимые разделы, полностью составлены технологические расчеты. Дипломную работу оцениваю на « отлично », А-(95%), и считаю её владельца --Ибадулла Жанөріс Байқадырұлы — достойным академическим степени бакалавра по специальности 6В07108 — «Транспортная инженерия».

Рецензент

Ассоциированный профессор,

доктор PhD

(должность, уж. степень, звание)

Бақыт Ғ.Б.

подпись)

Sea Tembershing WAS TOWN HOT BANDALDA

Maley YKTHOHEDHON OF

Ф ҚазҰТЗУ 706-17. Рецензия

ОТЗЫВ НАУЧНОГО РУКОВОДИТЕЛЯ

на дипломную работу (наименование вида работы)
Ибадулла Жанөріс Байқадырұлы (Ф.И.О. обучающегося)

6B07108 – Транспортная инженерия (шифр и наименование ОП)

Tema: «Модернизация мобильной эстакады на заводе Hyundai Trans Kazakhstan»

Дипломная работа выполнена в полном соответствии с заданием университета. Пояснительная записка и графическая часть оформлены с применением специализированных программ. Структура и содержание соответствуют методическим требованиям.

В работе рассмотрены вопросы модернизации мобильной эстакады на участке контроля качества, проведён анализ текущего состояния и предложены инженерные решения по улучшению конструкции.

В процессе выполнения:

- Выполнены прочностные и динамические расчёты;
- Обоснован выбор материалов;
- Разработан подъёмный механизм и система визуального контроля;
- Учтены требования охраны труда и безопасности;
- Проведён экономический анализ эффективности;
- Проанализирован зарубежный опыт и патентная база.

<u>Технические решения обоснованы, расчёты точны, оформление соответствует нормам.</u>

Тема дипломной работы раскрыта полностью. Работа выполнена на высоком уровне и соответствует предъявляемым требованиям. Дипломный проект Ибадулла Жанөріс может быть рекомендован к защите с присвоением ему академической степени бакалавра по образовательной программе 6В07108—Транспортная инженерия.

Научный руководитель

Профессор, кандидат

технических наук

(должность уч. степень, звание)

Абдуллаев С. С.

об» (подпись) 1 2025 г.

АҢДАТПА

Бұл дипломдық жұмыс Hyunda із Kazakhstan зауытының автомобиль астауын қарауға арналған мобильді эстакаданы жаңғырту мәселесіне арналған. Жоба аясында эстакаданың негізгі тораптарының беріктік және динамикалық есептері жүргізіліп, жоғары берік, коррозияға төзімді материалдар таңдалды. Лифт механизмі, Andon көрнекі бақылау жүйесі және техникалық қызмет көрсету регламенті жобаланды. Жаңғыртуға дейінгі және кейінгі өнімділік, өзіндік құн және өнеркәсіптік қауіпсіздік көрсеткіштері салыстырылып, диагностика уақытының қысқаруы мен жұмысшыларға түсетін физикалық жүктеменің азаюы дәлелденді.

АННОТАЦИЯ

Дипломная работа посвящена модернизации мобильной эстакады для автомобилей на заводе Hyundai Trans Kazakhstan. В осмотра днища рассмотрены технологические, конструкторские, исследовании организационные и экономические аспекты проекта: выполнены прочностные и динамические расчёты ключевых узлов, обоснован выбор высокопрочных и коррозионностойких материалов, спроектированы механизм подъёма, система визуального контроля и регламент технического обслуживания. Проведён сравнительный анализ производительности, себестоимости промышленной безопасности до и после модернизации; показано сокращение времени диагностики и снижение физических нагрузок персонала.

ABSTRACT

This thesis focuses on the modernization of a mobile inspection ramp for under-car examinations at Hyundai Trans Kazakhstan. The study addresses technological, design, organizational, and economic facets of the project. Strength and dynamic analyses were performed for critical components, high-strength corrosion-resistant materials were justified, and a lifting mechanism, Andon visual control system, and maintenance schedule were engineered. A before-and-after comparison of productivity, unit cost, and industrial safety demonstrates reduced inspection time and lower physical workload for personnel.

ОГЛА НИЕ

ВВЕДЕНИЕ	2
1. ОТДЕЛ КОНТРОЛЯ КАЧЕСТВА	3
1.1 ОК пост	5
1.2 Испытательная линия (линия тестов)	9
1.3 Пост проверки нижней части кузова	13
1.4 Shower test (Тест с использованием душевой камеры)	15
1.5 Пост проверки систем ADAS	16
1.6. Тестирование системы HADS	18
1.7. Финальный контроль (Final Control)	20
2. МОСТОВЫЕ ЭСТАКАДЫ	27
2.1. Опоры	28
2.2. Балка и ферма	28
2.3. Стыковочные узлы	28
3. Выбор материалов для покрытия и защиты	29
3.1. Оцинкование	29
3.2. Антикоррозийные покрытия	29
3.3. Нержавеющая сталь	29
4. Процесс строительства стальной эстакады	30
4.1. Подготовка основания	30
4.2. Изготовление элементов	30
4.3. Монтаж конструкции	30
4.4. Покрытие и защита	30
5. Техническое обслуживание и ремонт	31
ЗАКЛЮЧЕНИЕ	46
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	47

вві іие

Эстакады играют ключевую роль в транспортной инфраструктуре, обеспечивая бесперебойное движение на сложных участках дорог, таких как перекрестки и развязки. Проблематика, рассматриваемая в данной работе, направлена на анализ существующих решений в области проектирования и модернизации эстакад, их влияние на транспортные потоки и экономическую эффективность.

С каждым годом всё более важной становится задача реконструкции существующих эстакад, что часто оказывается более выгодным решением по сравнению с полной заменой конструкций. Это обусловлено значительным сокращением финансовых затрат и времени строительства. В контексте этой работы рассматриваются различные типы эстакад, их проектирование с учётом геометрических характеристик, нагрузки и функциональности.

Одним из ключевых направлений работы является модернизация мобильной эстакады, предназначенной для осмотра днища автомобилей. Эта эстакада необходима для проведения технического осмотра транспортных средств на мобильных станциях технического обслуживания и пунктах осмотра. В рамках данной дипломной работы будет проведен расчет и проектирование модернизированной мобильной эстакады, что позволит повысить её эксплуатационные характеристики, улучшить безопасность работы персонала и ускорить процесс диагностики транспортных средств.

Модернизация включает себя перерасчет существующих конструктивных решений, выбор новых материалов, улучшение механизма создания дополнительных условий для удобства работы подъема и Bce расчеты, включающие нагрузочные технического персонала. характеристики, устойчивость конструкции, выбор и прочность материалов, а также технико-экономическое обоснование, будут подробно представлены в работе.

Цель работы заключается в разработке проекта по модернизации мобильной эстакады для осмотра днища автомобилей с учётом современных требований безопасности, функциональности и экономической эффективности. Задачи работы включают проведение расчетов для выполнения работ, анализ и проверку существующих конструкций, выбор материалов и методов модернизации, а также оценку эффективности внедрения нового проекта.

Основная цель дипломного исследования состоит в предложении оптимальных решений для модернизации мобильной эстакады, что позволит повысить эффективность технического обслуживания транспортных средств и обеспечить безопасность работы.

Сравнение эстакад для осмотра днища автомобилей

1. ОТДЕЛ КОНТРОЛЯ КАЧЕСТВА

Отдел контроля качества работает в соответствии с глобальными производственными требованиями качества компании Hyundai Motor. Квалифицированные инженеры и специалисты постоянно следят за производственным процессом и проверяют качество каждого автомобиля. Этот отдел играет важную роль в обеспечении высокого производственного качества и повышении доверия клиентов.

До того как кузов автомобиля поступит в отдел контроля качества, он проходит через ряд важных технологических и производственных операций. Каждая из этих операций направлена на обеспечение прочности, точности и производственного качества кузова автомобиля (Таблица 1).

Таблица 1 – Кузов автомобиля до отдела контроля качества

N₂	Этап	Описание		
1	Поставка компонентов	Компоненты автомобиля (двигатель, трансмиссия, элементы кузова и др.) доставляются из Южной Кореи в завод через морской, воздушный и железнодорожный транспорт. Доставленные компоненты проходят входной контроль качества и размещаются на складе.		
2	Производство кузова	В сварочном цехе кузов автомобиля проходит через роботизированные сварочные процессы. Сваренный кузов проверяется отделом контроля качества сварочного цеха.		
3	Покрасочный цех	После прохождения контроля качества сварочного цеха, кузов автомобиля отправляется в покрасочный цех. В нем выполняются несколько важных операций: обработка от коррозии, нанесение герметика на соединительные участки компонентов кузова, грунтовка, покраска и лак. Покрашенные кузовы затем проверяются отделом контроля качества покрасочного цеха.		
4	Сборочный цех	Все системы (электрическая система, двигатель, интерьер и т.д.) устанавливаются на автомобиль. Процесс сборки контролируется на каждом посту. После сборки автомобили передаются в отдел контроля качества.		

Отдел контроля качества на заводе Hyundai Trans Kazakhstan непрерывно внедряет улучшения для повышения эффективности производственных процессов и улучшения качества продукции. Работа этого отдела напрямую влияет на общую прибыль завода и удовлетворенность клиентов.

Структура отдела контроля качества:

- 1) Руководитель отдела;
- 2)Ведущий инженер по качеству;
- 3) Инженер по качеству;
- 2 мастера;

- 2 специалиста технического контроля (ТББ);
- 2 бригадира;
- 2 оператора ADAS;
- 4)Около 30 контролеров.

На данный момент в отделе контроля качества следующие посты:

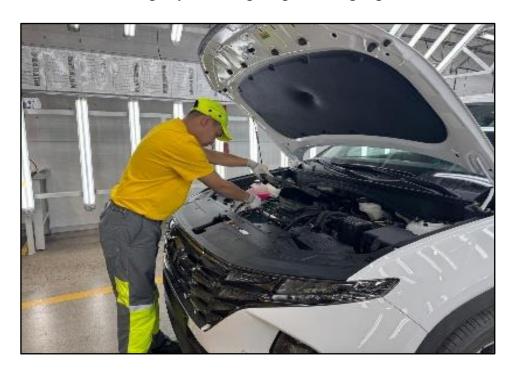

- 5)ОК пост (финальный контроль);
- 6) спытательная линия:
- 7)Геометрический пост;
- 8)Пост тормозных испытаний;
- 9) Тест на скорость (Speed Test);
- 10)Пост проверки световой системы;
- 11)Пост проверки нижней части кузова;
- 12)Shower test;
- 13)Пост проверки систем ADAS;
- 14)Испытание системы HADS;
- 15)Финальный контроль (Final Control);
- 16) Тестовая трасса.

1.1 ОК пост

ОК пост — это один из этапов контроля и приемки на заводе после производства. Здесь автомобиль проходит последние проверки после полной сборки. На этом этапе тщательно проверяются все технологические модули, внешние и внутренние элементы, функции и параметры безопасности автомобиля.

Таблица 2 – Основные задачи ОК поста

№	Основные задачи	Действия
1	Проверка момента затяжки	Проверка момента затяжки жизненно
	(рис. 1.1)	важных соединений является обязательным
		этапом производственного контроля. Слишком
		слабая или слишком сильная затяжка крепежных
		элементов может вызвать неисправности в
		процессе эксплуатации, особенно в двигателе,
		подвеске, тормозной и рулевой системах.
		Каждое соединение затягивается до заданных
		значений момента. Контроль точности момента
		затяжки — это гарантия качества производства.
		Это важно не только для надежности
		автомобиля, но и для безопасности клиента.
2	Проверка экстерьера (рис.	Во время сварки, покраски или сборки
	1.2)	автомобиля экстерьер может быть поврежден.
		Проверяется равномерность зазоров между
		панелями. Осматриваются деформации и
		неправильно установленные детали. Проверка
		экстерьера — важный процесс для обеспечения
		внешнего качества автомобиля. Это влияет не
		только на эстетическую привлекательность
		автомобиля, но и на первое впечатление клиента
		и его доверие к продукту. Каждая деталь и
		поверхность являются свидетельством
		качественного производства.
3	Проверка интерьера (рис.	Проверяется целостность сидений,
	1.3)	панелей, обивки дверей и ковров. Проверка
		интерьера — основа качества автомобиля,
		комфорта клиента и первого впечатления. Этот
		процесс демонстрирует культуру производства и
		ответственность компании. Точность в деталях
		интерьера повышает доверие и
4	П	удовлетворенность клиента.
4	Проверка пространства под	Проверяются уровни масла, антифриза,
	капотом (рис. 1.4)	тормозной жидкости и других жидкостей, а
		также отсутствие утечек. Осматриваются трубы,
		шланги и соединения на наличие утечек, трещин или ослабленных креплений. Проверяется
		1 1
		правильность и надежность подключения аккумулятора, кабелей и электрических
		аккумулятора, кабелей и электрических соединений. Неисправности в моторном отсеке
		могут привести к непредвиденным ситуациям на
		<u> </u>
		контролировать этот участок — это напрямую влияет на безопасность водителя и пассажиров.
		влияет на осзопасность водителя и пассажиров.


1.1-рисунок – Проверка момента затяжки

1.2-рисунок – Проверка экстерьера

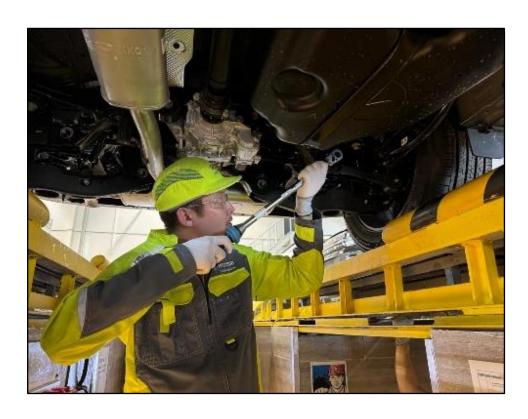
1.3-рисунок – Проверка интерьера

1.4-рисунок – Проверка пространства под капотом

1.5-рисунок – Проверка багажного отделения

1.6-рисунок – Проверка спецификации

Если в автомобиле обнаружены какие-либо дефекты, они фиксируются в карте контроля сборки автомобиля и передаются в участок устранения дефектов (УУД). Если автомобиль соответствует всем требованиям, он отправляется на следующий пост.


1.2 Испытательная линия (линия тестов)

Испытательная линия — это один из важных этапов после ОК поста. Она состоит из нескольких ключевых участков:

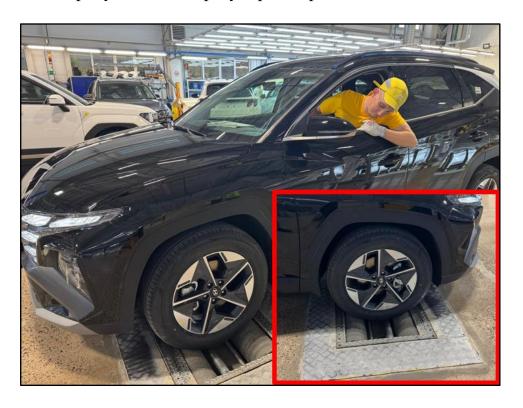
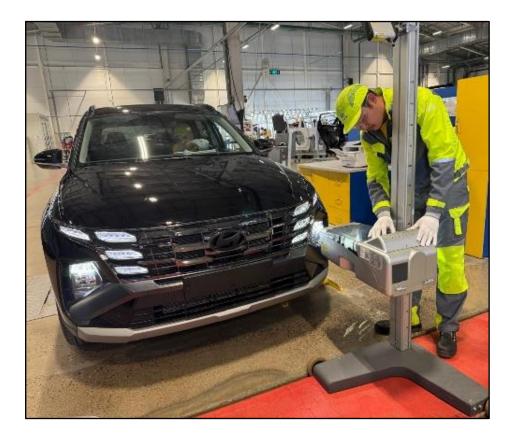
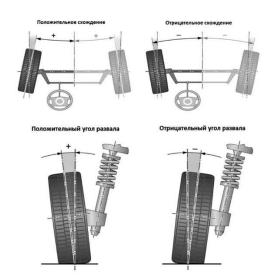

- 1)Геометрический пост;
- 2)Тест тормозной системы;
- 3)Тест на скорость (Speed Test);
- 4)Пост проверки световой системы.

Таблица 3 - Участки испытательной линии

Испытательн ая линия (линия тестов)	1. Геометрически й пост (рис. 1.7)	2. Тест тормозной системы (рис. 1.8)	3. Тест на скорость (Speed Test) (рис. 1.9)	4. Пост проверки световой системы
На этом	На этом	Этот	На этом	В этом
этапе	участке	этап	участке	разделе
проверяется	проверяется	включает	проверяются	проверяются
геометрия	эффективность	установку	все световые	все световые
кузова	тормозной	автомобиля	элементы	элементы
автомобиля,	системы	на	автомобиля:	автомобиля —
углы развала-	автомобиля.	специальные	фары ближнего	фары ближнего
схождения	Автомобиль	ролики, при	и дальнего	и дальнего
колес,	размещается на	ЭТОМ	света,	света,
симметрия	специальном	проверяется	противотуманн	противотуманн
кузова и	роликовом	его скорость	ые фары, стоп-	ые фары, стоп-
давление в	стенде, и	до 30 км/ч.	сигналы,	сигналы,
шинах с	симулируется	Показания	поворотники и	поворотники и
использование	процесс	спидометра	дневные	дневные
M	торможения.	сравниваютс	ходовые огни.	ходовые огни.
специального	Контролируютс	яс	Также	Также
оборудования.	я тормозные	фактической	проверяется	проверяется
	силы на каждом	скоростью	угол	соответствие
	колесе,	автомобиля,	освещенности	угла
	балансировка и	ЧТО	фар для	освещенности
	работа ручного	позволяет	соответствия	фар стандартам.
	тормоза.	оценить	стандартам.	
		плавность и		
		равномернос		
		ть ускорения		
		автомобиля.		


1.7-рисунок – Пост регулировки развала и схождения

1.8-сурет – Проверка тормозной системы

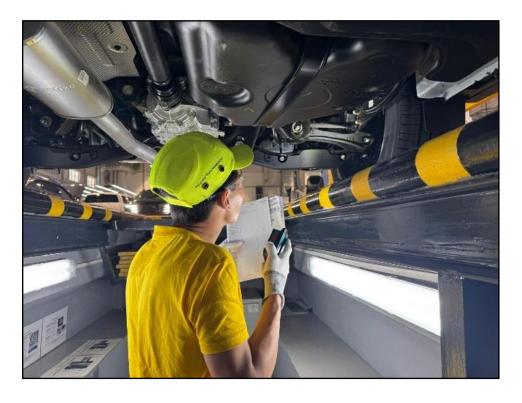

1.9-Рисунок - Тест на скорость (Speed Test)

1.10-Рисунок - Пост проверки световой системы

Корректировка углов геометрии колес (11-Рисунок) (развал-схождение) выполняется с целью:

- 1) Обеспечения стабильности на дороге правильно отрегулированные углы гарантируют прямолинейное движение автомобиля, при этом руль не отклоняется в сторону.
- 2) Обеспечения равномерного износа шин если развал или схождение настроены неправильно, одно из колес будет изнашиваться быстрее, что сокращает срок службы шины.
- 3) Снижения расхода топлива если углы неправильно отрегулированы, автомобиль будет двигаться с большим сопротивлением, что увеличивает расход топлива.
- 4) Повышения безопасности движения автомобиль становится более управляемым, а риск отклонения от дороги при резких поворотах или увеличении скорости снижается.

1.11-Рисунок - Развал-схождение колес автомобиля


Эти комплексные испытания дают полную уверенность в качестве и безопасности автомобиля и гарантируют, что каждый автомобиль, покидающий завод, соответствует стандартам.

1.3 Пост проверки нижней части кузова

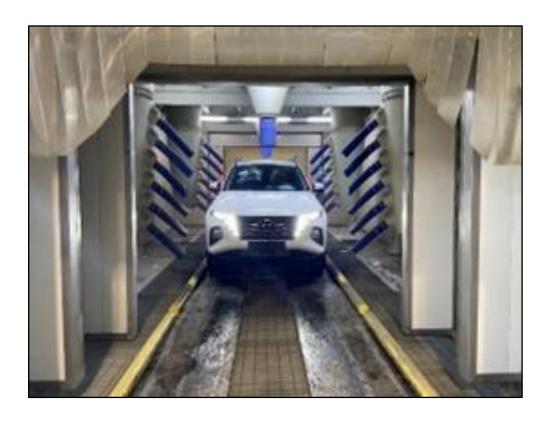
Пост проверки нижней части кузова (рис. 12) предназначен для проверки нижней части автомобиля, особенно кузова и движущихся частей. Это важный этап для обеспечения долгосрочной эксплуатации автомобиля, защиты от коррозии и безопасности на дороге.

Таблица 4 – Основные задачи поста проверки нижней части кузова

Проверки кузова	Основные задачи	Действия
1	Проверка на	Проверяется наличие
	повреждения и	вмятин и царапин в нижней части
	механические дефекты	кузова. Эти повреждения могут
		представлять опасность на
		парковке или на дороге.
2	Проверка	Оценка состояния
	подкапотного пространства	двигателя и трансмиссии,
	двигателя и трансмиссии	проверка на механические
		повреждения, вызванные
		сильными ударами или
		временными неисправностями.
3	Проверка тормозной	Оценка качества деталей
	системы	тормозной системы, прочности
		болтов и рабочее состояние
		тормозной системы.
4	Проверка	Проверка правильности
	спецификации	сборки и расположения деталей
		нижней части кузова в
		соответствии с комплектацией,
		чтобы избежать их смещения.

1.12-Рисунок — Пост проверки нижней части кузова

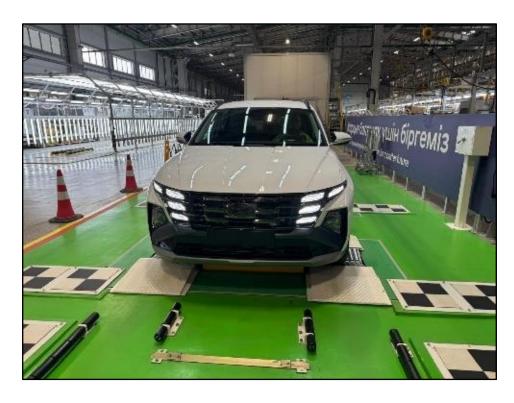
Проверка нижней части кузова позволяет вовремя выявить поврежденные или потенциально опасные элементы и провести их ремонт. Это критически важный этап для обеспечения безопасности и качества автомобиля.


1.4 Shower test (Тест с использованием душевой камеры)

Shower test - это участок, оснащенный камерой, имитирующей дождь и сильный ветер. Здесь проверяется герметичность швов автомобиля и качество герметизирующих материалов. Внутри специальной камеры с помощью высоконапорных распылителей на автомобиль распыляется вода под различными углами, имитируя сильный дождь (рис. 13). На этом этапе оператор тщательно проверяет, что в салон автомобиля (двери, окна, багажник, швы на крыше и уплотнители) не проникает вода. Признаки утечек (капли, следы влаги) выявляются визуально или с использованием сенсорных методов.

1.13-Рисунок - Имитация дождя

На следующем этапе через специальные трубопроводы под высоким давлением подается воздух, имитируя сильный ветер (рис. 14). Оператор проверяет уровень шума в салоне автомобиля.


1.14-Рисунок - Имитация сильного ветра

Тестирование герметичности с имитацией дождя и ветра является надежным методом оценки способности автомобиля противостоять неблагоприятным погодным условиям. Эти испытания повышают качество автомобиля, обеспечивая комфорт и безопасность для потребителя.

1.5 Пост проверки систем ADAS

ADAS (Advanced Driver Assistance Systems) - это основная часть современных автомобильных систем безопасности. Эта система помогает водителю эффективно контролировать дорожные условия и предотвращать аварии. Поэтому проверка полной и точной работы этих систем на этапе контроля качества на заводе является одним из самых важных этапов.

На заводе Hyundai Trans Kazakhstan организован специальный пост для тестирования систем ADAS (рис. 1.15). На этом посту электронные помощники автомобиля проверяются в условиях, максимально приближенных к реальным. Правильность калибровки систем и точность их алгоритмов работы оцениваются на основе результатов тестов.

1.15-Рисунок - Пост проверки систем ADAS

Таблица 5 - Проверка систем ADAS

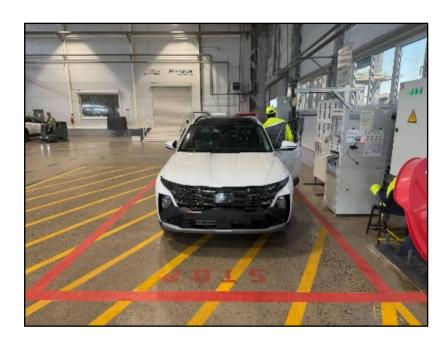
No	Название системы	Функция	Метод проверки
1	Адаптивный	Сохраняет	Проверка автоматической
	круиз-контроль (АСС)	безопасное	регулировки расстояния между
		расстояние от впереди	автомобилями на разных
		едущего автомобиля.	скоростях и в различных условиях.
2	Система	Предупреждает	Проверка своевременности
	предупреждения о	водителя о	предупреждения при установке
	столкновении (FCW)	препятствии или	препятствия перед автомобилем.
		автомобиле, который	
		появляется перед ним.	
3	Автоматическое	Останавливает	Проверка начала
	экстренное торможение	автомобиль, если	торможения системой в случае,
	(AEB)	водитель не	если водитель не реагирует.
		реагирует.	

Таблица 5 - продолжение

4	Система предупреждения о выходе из полосы (LDW) и удержания в полосе (LKA)	Предупреждает водителя о выходе из полосы или помогает вернуть автомобиль в полосу.	Проверка реакции системы на намеренное отклонение от полосы на специально подготовленной дороге.
5	Парк-ассистент (Park Assist)	Помогает автомобилю самостоятельно припарковаться.	Проверка процесса нахождения свободного места и парковки с использованием сенсоров и камер автомобиля.
6	Мониторинг внимания водителя (Driver Attention Monitoring)	Определяет внимание водителя, его усталость или снижение концентрации.	Создание специальных условий для проверки реакции системы.

Этапы проведения тестирования:

- 1) Предварительная активация систем включение всех систем и проверка их конфигурации;
- 2) Проверка по тестовым сценариям тестирование вышеупомянутых систем в условиях, имитирующих реальную дорожную ситуацию;
- 3) Регистрация результатов с помощью диагностических устройств мониторинг работы системы с использованием специальных электронных приборов.


Значение системы и ее влияние на безопасность: Системы ADAS не только повышают уровень безопасности автомобиля, но и играют ключевую роль в улучшении показателей качества производства. Если эти системы не работают должным образом, это может создать опасность на дороге. Поэтому каждая система ADAS проходит обязательную проверку в конце производственного процесса для обеспечения их правильной работы.

1.6. Тестирование системы **HADS**

HADS (Highly Automated Driving Systems) это комплекс интеллектуальных систем, позволяющих автомобилю управляться полностью или частично автономно, снижая потребность в участии водителя. Эти системы являются одной ИЗ самых современных тенденций в автомобильной промышленности и направлены на повышение безопасности на дороге и снижение нагрузки на водителя.

На заводе Hyundai Trans Kazakhstan организован пост для тестирования систем HADS, соответствующий требованиям нового поколения процесса контроля качества (рис. 1.16). Эти системы имеют сложную и многослойную

структуру, поэтому их тестирование проводится на основе специальных сценариев и условий.

1.16-Рисунок - Пост проверки систем HADS

Таблица 6 – Основные функции системы HADS

No	Название функции	Функция
1	Автономное управление	Автоматически корректирует руль, следуя за
	рулем	линиями разметки.
2	Адаптивное управление	Автоматически регулирует скорость автомобиля
	скоростью	в зависимости от дорожных условий.
3	Экстренная обработка	Реагирует на внезапные препятствия или
		блокировки на дороге.
4	Перестроение в другой ряд	Автоматически меняет полосу движения, исходя
		из скорости и условий движения.
5	Ночное видение +	Использует камеры и сенсоры для обнаружения
	обнаружение пешеходов	пешеходов и препятствий в ночное время.

Особенности тестирования: Тестирование системы HADS охватывает не только стандартные дорожные условия, но и более сложные и разнообразные сценарии. Некоторые из специальных тестов, проводимых на тестовой трассе:

- 1) Вождение в условиях низкой освещенности проверка чувствительности ночной камеры и сенсоров;
- 2) Обнаружение пешеходов тестирование модуля обнаружения пешеходов с использованием искусственных препятствий;
- 3) Аварийное торможение проверка, останавливается ли автомобиль, если водитель не реагирует;
- 4) Выезд с поворота и возвращение на полосу проверка способности автомобиля поддерживать курс в сложных дорожных ситуациях;

5) Автоматическое возвращение на полосу (self-centering) - проверка способности автомобиля вернуться в свою полосу при отклонении от пути.

Оборудование и условия тестирования:

GPS-модули - для отслеживания точных координат движения;

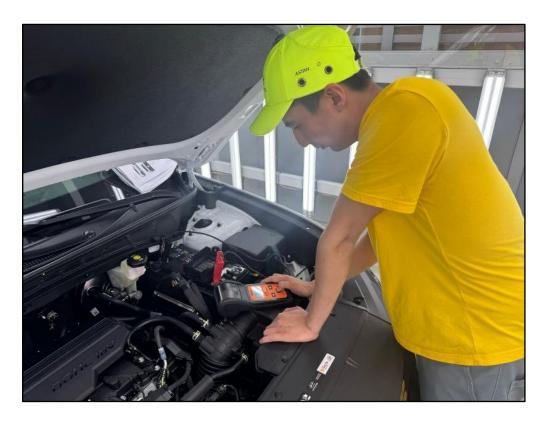
LIDAR и радарные системы - для 3D-сканирования окружающего пространства;

Многофункциональные камеры для визуализации передней, задней и боковых частей автомобиля;

Устройства OBD-II - для регистрации и диагностики систем во время движения.

Эти испытания обеспечивают уверенность в качестве и безопасности автомобиля, а также способствуют улучшению опыта водителя и повышению общей безопасности на дороге.

1.7. Финальный контроль (Final Control)


Финальный контроль — это один из самых последних и решающих этапов производства автомобиля. На этом этапе, после полной сборки автомобиля, проверяются все его системы - электрические, механические, гидравлические и электронные компоненты - комплексно. Операторы контроля проверяют, что все технические параметры автомобиля соответствуют стандартам, используя специальные контрольные списки.

Финальный контроль включает в себя повторную проверку всех операций и проверок, проведенных ранее. Все элементы автомобиля проверяются в соответствии с инспекционными стандартами, и выявляются возможные дефекты.

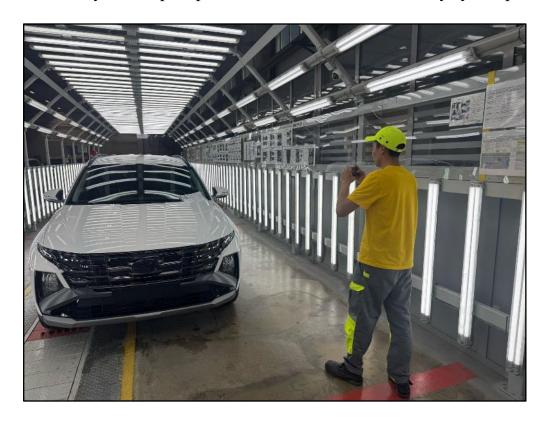

Кроме того, в процессе финального контроля проводятся дополнительные проверки, которые не проводились на других этапах. Например, проверка состояния и мощности аккумулятора (АКБ), фотофиксация автомобиля со всех сторон, проверка запасного хода, а также функциональность автомобиля. Эти операции необходимы для:

Таблица 7 - Проверки на финальном контроле

No	Операция	Зачем это нужно
1	Проверка состояния и	1. Определение достаточности напряжения для запуска
	мощности аккумулятора	стартера АКБ (аккумуляторная батарея) питает стартер
	(рис. 1.17)	при запуске двигателя. Недостаток мощности может
		привести к невозможности завести автомобиль. 2.
		Обеспечение стабильной работы электрических систем
		Устройства, такие как освещение, мультимедиа,
		управляющие модули, системы безопасности (ABS, ESP),
		получают питание от АКБ. 3. Прогнозирование срока
		службы батареи С течением времени АКБ теряет свою
		мощность. Регулярная проверка позволяет заранее
		определить время замены. 4. Предотвращение
		неожиданных неисправностей Слабая или неисправная
		АКБ может привести к невозможности запуска автомобиля
		при низких температурах или длительном простое. 5.
		Контроль работы зарядной системы Если АКБ не
		заряжается полностью, это может указывать на
		неисправность генератора или регулятора напряжения.
2	Фотофиксация	1. Регистрация повреждений и сохранение их как
	автомобиля со всех	доказательства Фотофиксация всех внешних и
	сторон (рис. 1.18)	внутренних повреждений автомобиля позволяет
		использовать эти данные в процессе страхования, ремонта
		или контроля качества. 2. Контроль качества Необходимо
		для проверки соответствия внешнего вида автомобиля
		установленным стандартам после завершения производства
		или ремонта. 3. Подтверждение гарантийных обязательств -
		Фотофиксация помогает производителю или дилеру
		подтвердить выполнение гарантийных обязательств. 4.
		Сравнение нового и подержанного автомобиля Помогает
		создать базу для сравнения состояния автомобиля до и
		после его эксплуатации. 5. Регистрация состояния
		автомобиля перед доставкой Это важно для определения,
		кто несет ответственность за повреждения, возникшие во
		время транспортировки. 6. Анализ после ДТП Фотофиксация повреждений после аварии необходима для
		оценки ущерба и проведения экспертизы.

1.17-Рисунок - Проверка состояния и мощности аккумулятора

1.18-Рисунок - Фотофиксация автомобиля со всех сторон

1.19-Рисунок - Проверка функциональности автомобиля

Финальный контроль имеет своей основной целью обеспечение бездефектного, безопасного и качественного автомобиля, который будет передан клиенту. Любая неисправность, обнаруженная на этом этапе, становится основанием для возврата автомобиля на участок ремонта или переработки. Кроме того, этот процесс является важным источником данных для отдела контроля качества, поскольку повторяющиеся ошибки в процессе тестирования могут указывать на наличие дефектов в производственных процессах.

Модель	Грузоподъем ность (кг)	Производи тельность (автомобил ей/час)	Основное преимущество	Основной недостаток	Цена (T)
Эстакада А	5000	10	Высокая устойчивость, долговечность	Нуждается в постоянной установке	1,200,000
Эстакада В	3000	8	Мобильность, компактность	Ограниченная грузоподъемность	800,000
Эстакада С	6000	12	Быстрое поднятие и опускание, высокая мощность	Высокая стоимость, сложность обслуживания	1,500,000

1. Эстакада А (Стационарная):

Тип конструкции: Стационарная, предназначена для установки в фиксированном месте.

Преимущества:Отличается высокой устойчивостью и долговечностью, подходит для постоянного использования в техцентрах с высокой нагрузкой.

Недостатки:Требует постоянной установки, что ограничивает её мобильность. Не подходит для частой смены места расположения.

Применение:Рекомендуется для крупных автосервисов и технических станций с большим количеством автомобилей на проверку.

2. Эстакада В (Мобильная):

Тип конструкции: Мобильная, позволяет легко перемещать эстакаду в зависимости от потребностей.

Преимущества: Компактная и мобильная, позволяет использовать её в различных точках, что делает её удобной для небольших сервисов и выездных ремонтов.

Недостатки: Ограниченная грузоподъемность (до 3 тонн), что может быть недостаточно для тяжелых транспортных средств. Пониженная производительность.

Применение:Идеально подходит для мобильных пунктов технического обслуживания и небольших сервисов.

3. Эстакада С (Гидравлическая):

Тип конструкции: Гидравлическая, обеспечивает быстрый подъём и опускание автомобиля.

Преимущества: Быстрое поднятие и опускание автомобиля, высокая мощность подъёма до 6 тонн. Подходит для быстрого обслуживания и крупных автомобилей.

Недостатки: Высокая стоимость и сложность обслуживания из-за наличия гидравлической системы, что требует регулярной проверки и обслуживания.

Применение:Рекомендуется для крупных автосервисов с высокой производительностью, где требуется быстрая диагностика и проверка больших автомобилей.

1) Эстакады - представляют собой важную составляющую дорожной инфраструктуры, призванную оптимизировать транспортный поток и повысить пропускную способность дорог. В условиях растущего числа автомобилей на дорогах грамотное проектирование дорожных развязок и перекрестков приобретает особую актуальность. Эстакады выполняют ключевую функцию в обеспечении бесперебойного движения, повышении безопасности и сокращении расходов, связанных с дорожным движением.

Реконструкция существующих эстакад чаще всего оказывается более выгодным решением, чем полная их замена, особенно при модернизации четырехсторонних перекрестков. Такой подход обусловлен меньшими финансовыми затратами и сокращением сроков строительства по сравнению с созданием новой развязки. В сельских районах можно трансформировать два направления в Т-образный перекресток, приложив минимальные усилия. В

предпочтение городских условиях чаще всего отдается варианту обусловлено четырехсторонним перекрестком эстакадами, что необходимостью инфраструктуры, способной создания транспортной удовлетворить будущие потребности.

Модернизация эстакад приносит неоспоримые выгоды в плане безопасности, поскольку такие перекрестки исключают столкновения на одном уровне, что облегчает регулирование потока автомобилей и пешеходов и создает более безопасную обстановку, снижая риск дорожно-транспортных происшествий.

2) Исторический обзор эстакад

Концепция эстакад имеет глубокие исторические корни и восходит к древним цивилизациям. Эстакада представляет собой приподнятую конструкцию, которая позволяет преодолевать пересечения дорог или водных преград без создания прямых пересечений. Эти сооружения имеют статус памятников архитектуры и их происхождение связано с такими культурами, как древний Египет, Россия и Индия, где сохранились некоторые примеры сложных конструкций, свидетельствующих о высоком уровне строительных технологий той эпохи.

Первоначально эстакады для городских пересечений начали строить в XVII веке в Нидерландах. В этих странах эстакады представляли собой виадуки, пересекающие каналы и рвы, и использовались в качестве декоративных элементов для парков и замков. Эти ранние конструкции, выполненные в виде арок, напоминали римские акведуки и были предназначены в основном для пешеходного движения, с возможностью проезда конных экипажей и повозок. Со временем, когда города расширялись, а улицы понижались, эти декоративные эстакады стали превращаться в полноценные дороги с колоннадами, железными ограждениями и другими декоративными элементами, созданными архитекторами.

3) Типы эстакад

Эстакады могут быть классифицированы по нескольким признакам, включая их физическое устройство, назначение и тип движения, которое они обслуживают. Основные классификации включают функциональное назначение и тип потока движения.

3.1) Мостовые эстакады

Один из самых распространенных типов эстакад - мостовая эстакада, которая часто используется на перекрестках и развязках. Такие мостовые эстакады имеют несколько экологических преимуществ, поскольку они позволяют обеспечить непрерывное движение транспортных средств, при этом освобождая пространство под ними для других нужд, таких как озеленение, пешеходные дорожки, велосипедные пути и парковочные зоны. Эти эстакады особенно важны в городских условиях, где пространство ограничено, и его использование должно быть максимально эффективным.

Проектирование мостовых эстакад, как правило, ориентировано на существующие планировки дорог и размеры транспортных средств. Для

проектирования этих сооружений существуют различные нормативы, которые регулируют соответствие проектируемой конструкции окружающей среде и требованиям движения. В некоторых случаях, например, в новых районах или при строительстве новых эстакад, внешние размеры мостов могут быть более гибкими, что позволяет адаптировать проект с учетом специфики дорожного движения и требований к энергоэффективности и охране окружающей среды.

3.2) Функциональная классификация эстакад

Эстакады могут классифицироваться в зависимости от того, для какого типа движения они предназначены. Примеры таких эстакад включают:

Эстакады, предназначенные для автомобильных дорог, проходящих над железными дорогами: Эти эстакады позволяют автомобилям двигаться над железнодорожными путями, исключая аварийные ситуации и задержки, связанные с пересечением на одном уровне.

Эстакады для пересечения городских улиц: Эти эстакады обеспечивают непрерывное движение, устраняя необходимость на уровне пересечений.

Эстакады на развязках типа "клевер-лист": Такие эстакады соединяют различные направления съездов или подъездных дорог, поддерживая непрерывное движение без пересечений.

3.3) Геометрические особенности эстакад

Проектирование эстакад включает несколько геометрических факторов, которые влияют на их стоимость, эксплуатационные характеристики и долговечность. К важнейшим из них можно отнести:

Супер-уклон: это наклон дорожного полотна на поворотах, который компенсирует центробежную силу и позволяет автомобилям безопасно проходить повороты на высокой скорости. Необходимый супер-уклон зависит от радиуса поворота и скорости движения транспорта, что существенно увеличивает стоимость строительства, особенно на крупных кривых.

Дистанция видимости: Безопасность движения требует, чтобы водители могли видеть вперед достаточное расстояние для своевременного реагирования на возможные препятствия или изменения в условиях движения. Правильное проектирование гарантирует, что водители имеют достаточную видимость на подъезде к эстакаде.

Прочистки: Эстакады должны соответствовать минимальным требованиям по высоте и ширине, чтобы транспортные средства, в том числе крупногабаритные, могли безопасно проезжать под конструкцией, избегая столкновений. Эти параметры регулируются строительными нормами и зависят от места расположения и типа движения.

Качество покрытия: для долговечности и безопасности эстакад необходимо использовать высококачественные материалы, которые выдержат эксплуатационные нагрузки и атмосферные воздействия, а

2. МОСТОВЫЕ ЭСТАКАДЫ

Мостовые эстакады, являясь подтипом эстакад, проектируются таким образом, чтобы обеспечивать непрерывное движение транспортных средств и при этом освобождать пространство под ними для различных нужд, таких как озеленение, велосипедные и пешеходные пути. Эти эстакады особенно важны в условиях городского строительства, где земля является ограниченным ресурсом.

Проектирование мостовых эстакад требует соблюдения нормативных и инженерных стандартов, а также учета экологических аспектов. Они служат важными связующими звеньями между различными районами города или региона, улучшая движение транспорта и снижая уровень заторов.

Стальная эстакада: подробное руководство по проектированию, выбору материалов и этапам строительства

Стальная эстакада — это сложная инженерная конструкция, предназначенная для повышения пропускной способности транспортных узлов и повышения безопасности движения. Сталь используется для возведения эстакад из-за ее высоких прочностных характеристик, долговечности, а также способности эффективно выдерживать большие нагрузки и воздействия внешней среды. В этом разделе я более подробно опишу этапы проектирования, выбора материалов и строительства стальной эстакады.

1. Проектирование стальной эстакады

Перед тем как начать строительство, необходимо тщательно спроектировать все элементы конструкции. Процесс проектирования включает в себя несколько этапов:

1.1. Геометрия и размеры эстакады

Определение габаритов: В первую очередь, необходимо точно определить длину и ширину эстакады в зависимости от планируемого объема движения. Геометрические размеры будут зависеть от проектируемого транспортного потока, а также от наличия и размеров существующих дорог и зданий.

Высота пролета: Важным параметром является высота пролета эстакады, которая должна учитывать возможные препятствия под ней (например, другие дороги, железные дороги или реки).

1.2. Нагрузочные расчеты

Эстакада должна выдерживать различные типы нагрузок, как статических, так и динамических:

Статические нагрузки включают в себя вес самой конструкции, а также массу транспортных средств, движущихся по ней.

Динамические нагрузки исходят от вибраций, создаваемых движущимися транспортными средствами, а также от воздействий внешних факторов, таких как сильный ветер или землетрясения.

При расчете нагрузки учитываются также такие факторы, как:

- Прогибы и колебания конструкции
- Устойчивость и прочность балок, опор и других элементов

- Механическое воздействие от динамики транспортных средств

1.3. Выбор типа стали

Для разных частей конструкции эстакады могут использоваться различные марки стали, в зависимости от требуемых характеристик:

- Углеродистая сталь: применяется для балок и ферм, так как имеет хорошую прочность на сжатие и растяжение. Обычно выбираются марки S235, S275, S355.
- Нержавеющая сталь: используется в местах с агрессивной внешней средой (например, при строительстве эстакад в прибрежных зонах или местах с повышенной влажностью), поскольку она устойчива к коррозии.
- Коррозионностойкая сталь: для обеспечения долгосрочной защиты от ржавчины и воздействия внешней среды часто используются стали с антикоррозийными покрытиями или специальные сплавы.
 - 2. Типы стальных конструкций для эстакад

Стальная эстакада состоит из нескольких ключевых элементов, каждый из которых имеет свои особенности проектирования:

2.1. Опоры

Опоры — это вертикальные элементы конструкции, которые поддерживают всю стальную эстакаду. Для их изготовления используется высокопрочная сталь. Конструкция опор зависит от геологии местности и типовой нагрузки, которая будет передаваться через эти элементы.

- Типы опор: могут быть колонными (стоечными), тростниковыми или площадными, в зависимости от особенностей местности и требований к строительству.

2.2. Балка и ферма

Балка — это горизонтальный элемент конструкции, который воспринимает основные нагрузки и передает их на опоры. Балки могут быть двугавровыми, фермами, Т-образными или цилиндрическими — выбор типа балки зависит от длины пролета и расчетных нагрузок.

- Двутавровые балки самые распространенные для эстакад, они обладают высокой прочностью при относительно низкой массе.
- Фермы используются для крупных пролётов, где требуется высокая прочность при минимальном использовании металла.

2.3. Стыковочные узлы

Все соединения стальных элементов (балок, ферм и опор) должны быть выполнены с использованием сварки, болтовых соединений или заклепок. Сварка используется для соединения крупных элементов, а болтовые соединения - для монтажных работ.

- Болтовые соединения легче и быстрее собираются на месте, но они требуют тщательной затяжки и контроля.

3. Выбор материалов для покрытия и защиты

Стальная конструкция эстакады должна быть защищена от воздействия коррозии, особенно в зонах с повышенной влажностью или в прибрежных районах.

3.1. Оцинкование

Оцинкованная сталь — это сталь, покрытая слоем цинка, который защищает конструкцию от воздействия влаги и других агрессивных факторов. Оцинкованная сталь используется для изготовления элементов, подверженных максимальной нагрузке, таких как балки и опоры.

3.2. Антикоррозийные покрытия

Для дополнительной защиты от коррозии часто используются специальные эпоксидные и полиуретановые краски, которые образуют защитный слой на металле.

- Эти покрытия могут быть нанесены на поверхность стали в несколько слоев, что значительно увеличивает срок службы конструкции.

3.3. Нержавеющая сталь

В местах, подверженных интенсивному воздействию влаги (например, вблизи рек, морей или в условиях повышенной влажности), можно использовать нержавеющую сталь, которая не подвержена коррозии и имеет высокую прочность.

4. Процесс строительства стальной эстакады

4.1. Подготовка основания

На первом этапе важно подготовить и укрепить грунт под будущими опорами эстакады. В зависимости от геологических условий может потребоваться установка глубоких свай или плитных фундаментов.

4.2. Изготовление элементов

Большая часть конструктивных элементов (балки, фермы, опоры) изготавливаются на заводах с использованием современных технологий сварки и обработки металла. Все элементы проходят тестирование и проверку качества.

4.3. Монтаж конструкции

Монтаж стальной конструкции осуществляется с использованием подъемных кранов и специализированной техники. На этапе монтажа важно правильно соединить все элементы (болтами, сваркой или заклепками) и точно установить их в проектное положение.

4.4. Покрытие и защита

После установки всех элементов проводится нанесение антикоррозийных покрытий (если это предусмотрено проектом), а также других защитных материалов, например красок, которые придают конструкции не только защиту от внешних воздействий, но и улучшенный внешний вид.

5. Техническое обслуживание и ремонт

Стальная эстакада, несмотря на свою долговечность, требует регулярного обслуживания:

-Осмотр стыков и соединений: периодически нужно проверять болтовые соединения, сварные швы и заклепки на наличие повреждений или ослаблений.

-Антикоррозийная защита: проверка состояния антикоррозийных покрытий и их обновление при необходимости.

-Ремонт покрытия: регулярное обновление защитного покрытия, особенно в условиях агрессивных внешних факторов (соленая вода, высокая влажность).

Конструкция и особенности:

Форма и структура:

Стационарные эстакады могут быть выполнены в виде платформ или канав, в которые заезжает автомобиль.

Платформы могут быть ровными или с небольшим наклоном, что позволяет специалисту двигаться вдоль машины и проводить осмотр снизу.

Каналы — это углубления в земле или бетонные ямы, в которые заезжает автомобиль. Вдоль канавы расположены освещенные участки для лучшего обзора.

Материалы:

Эстакада может быть изготовлена из различных материалов: сталь для обеспечения прочности конструкции, бетон для более долговечных и устойчивых к нагрузке решений, нержавеющая сталь для устойчивости к коррозии и воздействиям агрессивных жидкостей.

Антикоррозийная обработка материалов, таких как оцинкованные стали или специальные покрытия, используется для защиты от ржавчины и долговечности эстакады.

Освещение:

На большинстве стационарных эстакад установлены встраиваемые светильники или LED-лампы под платформой для обеспечения хорошей видимости при осмотре всех частей днища автомобиля.

Вдоль канав или на платформе часто устанавливаются регулируемые светильники, которые можно настроить под нужды осмотра.

Механизм подъема:

Некоторые модели стационарных эстакад оснащены дополнительными гидравлическими механизмами для подъема машины или её частей, чтобы упростить доступ к труднодоступным зонам.

Этот механизм может быть особенно полезен для осмотра таких частей, как выхлопная система, которые могут располагаться в нижней части автомобиля, вблизи земли.

Преимущества стационарных эстакад для осмотра авто:

Безопасность:

Стационарные эстакады обеспечивают безопасность для персонала и предотвращают необходимость выполнения работы с низкой посадки (например, на коленях), что снижает риск травм.

Конструкция платформы или канала позволяет специалисту работать в удобной позе, снижая нагрузку на спину и суставы.

Эффективность:

Структуры с хорошей видимостью и освещением позволяют провести более детальный осмотр, выявляя даже мелкие повреждения, утечки или износ, которые могли бы быть пропущены при другом типе осмотра.

При необходимости можно установить дополнительные устройства, такие как датчики для выявления утечек или тепловизоры, что позволяет улучшить диагностику и повысить точность.

Экономия пространства:

Эти эстакады занимают сравнительно мало места по сравнению с более сложными подъёмниками, особенно в случае с канавами, которые могут быть интегрированы в стандартную поверхность автосервиса.

Пример использования в автосервисах:

Эстакады для осмотра днища автомобилей используются, например, на тех станциях, где проводится регулярная проверка состояния транспорта для диагностики. Например, на таких станциях можно проводить:

Проверку выхлопной системы автомобиля.

Диагностику подвески.

Осмотр на наличие коррозии и повреждений днища.

Проверку работы тормозной системы, если она включает компоненты, размещённые под кузовом.

Типичные технические характеристики:

Размеры: Ширина платформы обычно варьируется от 2 до 3 метров, длина - от 4 до 6 метров, в зависимости от типа автомобилей, которые будут проверяться.

Грузоподъемность: Эстакада должна выдерживать вес автомобилей до 3–5 тонн. При этом конструкция может быть усилена в зависимости от веса автомобилей.

Наличие дополнительного оборудования: можно оснастить эстакаду подъемными механизмами, освещением, системой очистки.

Применение:

Стационарные эстакады идеально подходят для профессиональных автосервисов, пунктов технического осмотра и механических мастерских, где необходимо выполнять регулярную проверку состояния транспортных средств с возможностью работы с днищем, которое трудно осмотреть без поднимания машины или специального оборудования.

1. Эстакада с инженерным кабинетом на верхнем уровне

Описание: В этом варианте эстакада имеет дополнительный верхний уровень, где размещается инженерный кабинет. Кабинет может быть построен в виде небольшой закрытой комнаты или кабины, которая располагается над рабочей платформой. Этот кабинет оснащен окнами для наблюдения за процессом работы с автомобилей и может содержать панели управления для работы с подъемниками.

Преимущества:

Инженер находится на уровне рабочей платформы, что позволяет ему легко наблюдать за процессом ремонта.

Может быть оснащен оборудованием для диагностики.

Пространство используется эффективно: кабинет располагается над платформой, не занимая дополнительной площади.

Пример:

Эстакада длиной 10–15 м, шириной 3–4 м.

Верхний этаж с кабинетами для инженеров, которые также могут включать технические средства для контроля за оборудованием.

Системы управления и диагностики установлены в кабинете, что упрощает работу с механиками.

2. Эстакада с отдельно стоящим инженерным кабинетом

Описание: В этом варианте инженерный кабинет расположен отдельно от эстакады, но рядом с ней. Это может быть небольшой двухэтажный модуль или здание, в котором на втором этаже размещается кабинет для инженера или оператора. Эстакада, как правило, имеет основную рабочую платформу для ремонта автомобилей, а кабинет используется для контроля, управления и работы с техническим оборудованием.

Преимущества:

Пространство на самой эстакаде используется только для работы с автомобилями.

Инженер может контролировать процесс ремонта и диагностики из отдельной и защищенной зоны.

Легче организовать пространство и разграничить рабочие зоны для сотрудников.

Пример:

Эстакада длиной 14–16 м, шириной 4 м.

Инженерный кабинет может быть небольшим двухэтажным зданием рядом с эстакадой, расположенным на уровне второго этажа.

На первом этаже могут располагаться помещения для инструментов, оборудования и небольшая зона для сотрудников.

3. Эстакада с инженерным кабинетом на платформе

Описание: В этом варианте инженерный кабинет находится прямо на рабочей платформе, интегрированный в саму конструкцию эстакады. Кабинет может быть небольшой защищенной кабиной с панорамными окнами, расположенной в одном из углов платформы. Этот вариант хорош для небольших сервисных центров, где площадь ограничена.

Преимущества:

Инженер постоянно находится в непосредственной близости от рабочего процесса.

Простота в обслуживании: инженер может управлять системой подъема, диагностикой и ремонтом прямо из кабинета.

Подходит для небольших станций с ограниченной площадью.

Пример:

Эстакада длиной 8–10 м, шириной 3 м.

Кабинет с окнами в одном из углов, где инженер может контролировать работу с автомобилями.

Пространство в кабинете ограничено, но удобно для небольшого обслуживающего персонала.

4. Эстакада с инженерным кабинетом и вспомогательными помещениями

Описание: Этот вариант представляет собой более крупную конструкцию, которая включает эстакаду с несколькими рабочими платформами и инженерным кабинетом, который является частью большого здания с вспомогательными помещениями для персонала (например, комнаты для отдыха, складские помещения и т. д.).

Преимущества:

Эстакада может обслуживать несколько автомобилей одновременно, в то время как инженер и персонал могут контролировать процесс из одного места.

Кабинет может быть интегрирован в общее здание, что позволяет рационально использовать пространство.

Пример:

Эстакада длиной 18–20 м с несколькими рабочими площадками.

Инженерный кабинет с панорамным стеклом для наблюдения за процессом ремонта, расположенный в одной части здания.

Вспомогательные помещения для сотрудников (например, столовая, санитарные узлы и т. д.).

1. Расчет изгибающего момента:

Вы начали с расчета изгибающего момента М по формуле:

$$M = \frac{F \times L}{4} \tag{1.1}$$

где:

F - сила, приложенная к балке, равна 17167,5 H.

L - длина балки, равна 5,2 м.

Подставим значения в формулу:

$$M = \frac{17167,5 \times 5,2}{4} = 22317,75 \text{ H/m}$$
 (1.2)

Это значение изгибающего момента, которое мы будем использовать для выбора сечения балки и материалов.

2. Выбор сечения балки:

Сечение балки выбрано как квадрат с размерами b=0,4 м и h=0,4м.

3. Расчет момента инерции сечения балки:

Момент инерции для прямоугольного сечения балки рассчитывается по формуле:

$$I = \frac{b \times h^3}{12} \tag{1.3}$$

где:

b - ширина сечения балки;

h - высота сечения балки.

Подставим значения:

$$I = \frac{b \times h^3}{12} = \frac{0.4 \times (0.4)^3}{12} = 21.3 \times 10^{-4} \text{m}^4$$
 (1.4)

Это момент инерции сечения балки, который влияет на деформацию балки под нагрузкой.

4. Расчет сопротивления сечению:

Момент сопротивления балки S рассчитывается по формуле:

$$S = \frac{b \times (h)^2}{6} \tag{1.5}$$

Подставим значения:

$$S = \frac{b \times (h)^2}{6} = \frac{0.4 \times 0.4^2}{6} = 1.06 \times 10^{-5} \times M^3$$
 (1.6)

Момент сопротивления показывает, насколько эффективно сечение балки сопротивляется изгибу.

5. Расчет изгибающих напряжений:

Для расчета изгибающих напряжений о используется формула:

$$\sigma = \frac{M}{s} \tag{1.7}$$

где:

М - изгибающий момент;

S - момент сопротивления сечению.

Подставим значения:

$$\sigma = \frac{M}{s} = \frac{60083.5 \, H/m}{1.67 \times 10^{-4} \, \text{m}^3} = 3.59 \times \frac{10^8 H}{\text{m}^2} = 359 M \Pi a \tag{1.8}$$

Это изгибающее напряжение, которое возникнет в материале балки. Это значение важно для выбора материала, так как материал должен выдерживать такие напряжения без разрушения.

Итоговые рекомендации:

Сечение балки $0,4 \text{ м} \times 0,4 \text{ м}$ с моментом инерции $I=21,3*10^{-4}\text{ м}^4\text{ и}$ сопротивлением $S=1,06*10^{-5}\text{ м}^3$ рассчитано правильно.

Изгибающее напряжение σ=359МПа должно быть ниже предела прочности выбранного материала.

На основе этих данных можно выбрать материал с подходящими механическими свойствами, например, сталь с пределом прочности 350–400 МПа.

Коэффициент безопасности (Коэффициент запаса прочности)

При проектировании балок важно учитывать коэффициент безопасности. Это корректировочный коэффициент, который применяется к максимальным напряжениям, чтобы гарантировать, что конструкция не выйдет из строя при неожиданных перегрузках. Обычно коэффициент безопасности для стальных конструкций колеблется в пределах 1,5–2.

Пример:

Если для материала выбран предел прочности 360 МПа (например, для стали S235), то для расчета с коэффициентом безопасности α =2, максимальные допустимые напряжения будут составлять:

$$\sigma \text{доп} = \frac{\sigma \text{макс}}{\alpha} = \frac{360 \text{М}\Pi \text{a}}{2} = 180 \text{М}\Pi \text{a}$$
 (1.9)

Это означает, что для оптимальной безопасности максимальные напряжения, которые будут действовать на балку, должны быть меньше этого значения.

Анализ устойчивости балки

Для более детальной оценки балки нужно учитывать не только изгибные напряжения, но и устойчивость балки (например, на прогиб или на возможное внезапное разрушение при больших нагрузках). Для этого необходимо:

Рассчитать максимальный прогиб балки (в зависимости от материала, формы сечения и длины балки).

Проверить места максимальных напряжений - например, балка может иметь максимальные напряжения не в центре, а в местах, где находятся опоры или крепления.

Учесть возможные динамические нагрузки (например, от ветра, транспорта или других факторов).

Дополнительные параметры для расчета

Модуль упругости материала (Е): это важная характеристика, которая показывает, насколько материал сопротивляется деформациям при нагрузке.

Для стали Е≈210ГПа, что влияет на прогиб балки.

Для бетона Е может быть в пределах 25–35ГПа.

Рабочие условия: это могут быть условия окружающей среды, такие как температура, влажность, воздействие агрессивных веществ (например, морская вода). Все эти факторы могут повлиять на долговечность материала.

Подбор сечения балки

Балка имеет квадратное сечение 0,4 м х 0,4 м. Возможно, стоит провести несколько дополнительных расчетов, чтобы убедиться, что это сечение оптимально для расчетного изгибающего момента.

При увеличении сечения балки, например, переходе к более глубокому сечению (вместо квадрата 0,4 м можно выбрать прямоугольное сечение с большей высотой), момент инерции увеличится, что сделает балку более устойчивой к изгибу, однако при этом материал будет расходоваться больше, что увеличит стоимость.

Также можно провести анализ на сдвиг (сдвиговые напряжения) и убедиться, что сечение балки не будет подвергаться разрушению из-за сдвиговых нагрузок в местах креплений.

Максимальный прогиб балки

Для расчета максимального прогиба балки с фиксированными опорами или с опорами на концах в случае, если нагрузка распределена по всей длине балки, используется следующая формула:

$$\delta max = \frac{5FL^4}{384FI} \tag{2}$$

где:

бтах- максимальный прогиб в центре балки.

F - сила, приложенная к балке (17167,5 H).

L- длина балки (5,2 м).

Е- модуль упругости материала (для стали $E=210 \Gamma\Pi a=210*10^9 H/m^2$).

I- момент инерции сечения балки (у нас $I=21,3*10^{-4} \text{ m}^4$).

Подставим значения в формулу:

$$\delta max = \frac{5*17167,5*(5,2)^4}{384*210*10^9*21,3*10^{-4}}$$
 (2.1)

Сначала посчитаем в числовом виде:

$$L^4 = (5.2)^4 = 731.1616 \,\mathrm{M}^4$$
 (2.2)

$$F \cdot L^4 = 17167.5 \cdot 731.1616 = 12568252.72 \,\mathrm{H} \cdot \mathrm{M}^4$$
 (2.3)

$$E \cdot I = 210 \cdot 10^{9} \cdot 21.3 \cdot 10^{(-4)} = 4.473 \cdot 10^{7} \,\mathrm{H \cdot m^{2}}$$
 (2.4)

Теперь подставим все в формулу для прогиба:

$$\delta_{max} = (5 \cdot 12568252.72) / (384 \cdot 4.473 \cdot 10^{7}) \approx 62841263.6 / (1.717 \cdot 10^{10}) \approx 0.0037 \,\mathrm{m} = 3.7 \,\mathrm{mm}$$
 (2.5)

Таким образом, максимальный прогиб балки при этих условиях составит 3,7 мм.

Проверка на устойчивость (критическая нагрузка)

Для проверки устойчивости балки, необходимо рассчитать критическую нагрузку, при которой она начнёт терять устойчивость (выполнится гибель балочного сечения). Для этого используется следующая формула для

$$\sigma_{\{\text{KPMT}\}} = \{ frac\{\pi^2 E I\} \{L^2\} \}$$
 (2.6)

критической нагрузки окрит при изгибе:

Подставляем известные значения:

$$\sigma_{\text{крит}} = \frac{\pi^2 \times 210 \times 10^9 \times 21, 3 \times 10^{-4}}{(5,2)^2} \tag{2.7}$$

1.
$$\pi^2 = 9,8696.$$
 (2.8)

2.
$$E \times I = 210 \times 10^9 \times 21, 3 \times 10^{-4} = 4,473 \times 10^7 \,\mathrm{H} \cdot \mathrm{m}^2$$
. (2.9)

3.
$$L^2 = (5,2)^2 = 27,04 \,\mathrm{m}^2$$
. (3)

Расчет:

Подставляем все в формулу:

$$\sigma_{\text{\tiny KPHT}} = \frac{9,8696 \times 4,473 \times 10^7}{27,04} = \frac{4,419 \times 10^8}{27,04} \approx 16,34 \times 10^6 \, \text{H/m}^2 = 16,34 \, \text{M} \, \text{\Pi a} \qquad (3.1)$$

Таким образом, критическая нагрузка для вашей балки (для устойчивости) составляет 16,34 МПа.

Сравнение с расчетным изгибающим напряжением

Изгибающее напряжение, которое мы ранее рассчитали для вашей балки: σ =359МПа.

Так как изгибающее напряжение значительно больше, чем критическое напряжение (16,34 МПа), это означает, что балка не должна потерять устойчивость при этих нагрузках.

Итог:

Максимальный прогиб балки составляет 3,7 мм, что является приемлемым значением для большинства конструкций.

Балка не теряет устойчивость при данном изгибающем моменте, так как критическое напряжение значительно ниже расчетного изгибающего напряжения.

Места максимальных напряжений

Для расчета мест максимальных напряжений в балке нам нужно уточнить, где именно эти максимальные напряжения возникают. Для балки, подверженной изгибу, максимальные напряжения возникают в точках, где изгиб балки наибольший. Обычно это в средней части балки, в которой приходится наибольший изгибающий момент, а также на нижней и верхней поверхностях балки (в зависимости от направления изгиба).

Расчет мест максимальных напряжений:

Изгибающее напряжение σ можно рассчитать по следующей формуле:

где: M- изгибающий момент
$$\sigma = \frac{M \cdot y}{I}$$
 (22317,75 H·м, который мы рассчитали ранее).

У- расстояние от нейтральной оси до крайней точки сечения, где возникает максимальное напряжение. Для прямоугольного сечения балки с размерами b=0,4 м, h=0,4м, это будет половина высоты балки, то есть $y=\frac{h}{2}=\frac{0,4}{2}=0,2$ м

I - момент инерции сечения балки, который мы уже рассчитывали, $I=21,3*10^{-4}\mathrm{M}^4.$

Теперь подставим значения:

$$\sigma = \frac{M \cdot y}{I} = \frac{22317,75 \times 0,2}{21,3 \times 10^{-4}} \tag{3.3}$$

Шаги вычислений:

1.
$$M \cdot y = 22317,75 \times 0,2 = 4463,55 \,\mathrm{H} \cdot \mathrm{M}.$$
 (3.4)

2.
$$I = 21, 3 \times 10^{-4} \,\mathrm{m}^4$$
. (3.5)

Теперь подставляем в формулу:

$$\sigma = \frac{4463,55}{21,3\times 10^{-4}} = \frac{4463,55}{0,00213} \approx 2,095\times 10^6\,\mathrm{H/m^2} = 2095\,\mathrm{M\Pi a} \qquad (3.6)$$

Максимальное изгибающее напряжение в балке при максимальном изгибающем моменте $M=22317,75H\cdot M$ и сечении $0,4\times 0,4M$ будет 2095 МПа. Это напряжение будет действовать на крайние точки сечения (верхнюю и нижнюю части балки).

Динамические нагрузки возникают в конструкциях, когда действуют переменные или изменяющиеся со временем силы, такие как нагрузка от транспорта, ветер, сейсмическая активность или другие переменные силы.

Для расчета динамических нагрузок в строительных конструкциях часто используется коэффициент динамической нагрузки (КДН), который увеличивает расчетные статические нагрузки, учитывая эффект динамики.

1. Определение коэффициента динамической нагрузки (КДН)

Коэффициент динамической нагрузки kdyn зависит от типа нагрузки. Он может варьироваться в зависимости от материала и типа конструкции:

Для пешеходных нагрузок kdyn может быть от 1,1 до 1,4.

Для транспортных нагрузок kdyn обычно находится в пределах от 1,2 до 1,5 в зависимости от скорости и типа транспорта.

Для ветровых нагрузок и других природных факторов также могут использоваться специальные коэффициенты, которые могут варьироваться в зависимости от региона.

2. Формула для расчета динамической нагрузки

Для расчета динамической нагрузки можно использовать формулу:

$$F_{\rm dyn} = k_{\rm dyn} \cdot F_{\rm stat} \tag{3.7}$$

где:

Fdyn - динамическая нагрузка,

kdyn - коэффициент динамической нагрузки,

Fstat - статическая нагрузка, которую мы уже знаем (сила, приложенная к балке F=17167,5H).

Пример расчета динамической нагрузки

Давайте возьмем коэффициент динамической нагрузки для транспортных нагрузок. Обычно для таких случаев kdyn=1,3 (средний коэффициент).

$$F_{\text{dyn}} = 1, 3 \cdot 17167, 5 \,\text{H} = 22317, 75 \,\text{H}$$
 (3.8)

Результат

Для динамической нагрузки, учитывая коэффициент kdyn=1,3, динамическая нагрузка составит:

Таким образом, динамическая нагрузка на балку, учитывая коэффициент динамики, будет составлять 22317,75 Н.

Расчёт нагрузок на тормозную систему автомобиля Расчёт нагрузок, которые испытывают тормозные шланги, диски и суппорты автомобиля при экстренном торможении со скорости 90 км/ч. Рассматриваются условия сухого и влажного дорожного покрытия, выполняется анализ распределения нагрузок на одно колесо и на весь автомобиль.

Исходные данные:

Масса автомобиля (m) = 1600 кг

Ускорение свободного падения $(g) = 9.81 \text{ м/c}^2$

Начальная скорость (v) = 90 км/ч (25.0 м/с) Эффективный радиус тормозного диска (r) = 0.15 м Площадь одного поршня суппорта (A) \approx 4.0 см² Формулы расчёта:

Замедление:

$$a = \mu \times g$$

Общая тормозная сила:

$$F_{total} = m \times a$$

3. Тормозная сила на одно колесо:

F wheel = F total
$$/ 4$$

4. Момент на тормозном диске:

$$M = F_wheel \times r$$

5. Давление в тормозной системе:

$$P = F_{wheel} / (A \times 2)$$

6. Тормозной путь (s):

$$s = v^2 / (2 \times a)$$

Результаты расчётов:

Покрытие	Замедление	Сила на	Сила на	Момент	Давление	Тормозной
	(M/c^2)	авто (Н)	колесо	на диске	(МПа)	путь (м)
			(H)	(Н·м)		
Cyxoe	7.8	12 557	3 139	471	3.9	39.8
Влажное	4.9	7 848	1 962	294	2.5	63.7

График зависимости силы торможения и давления от коэффициента сцепления

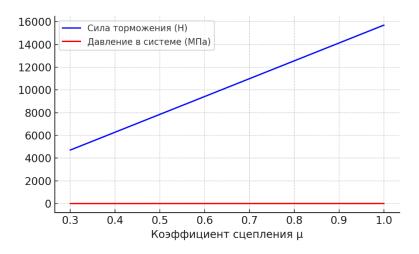
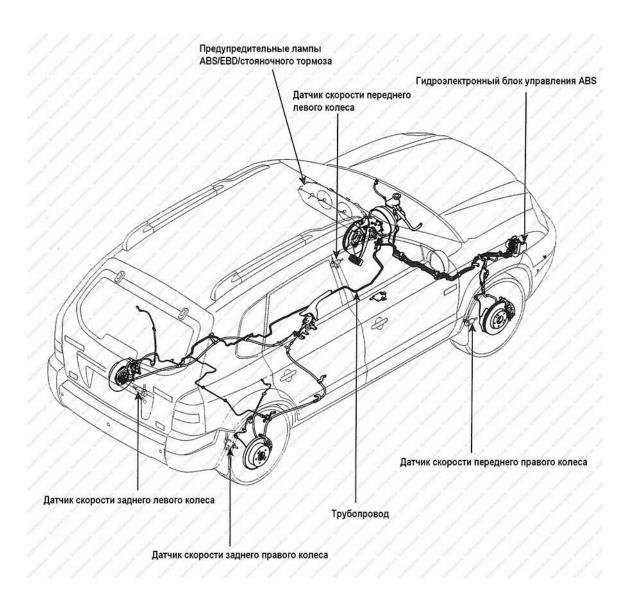



Схема тормозной системы автомобиля:

На схеме показаны основные элементы: главный тормозной цилиндр, тормозные шланги, суппорты, дисковые тормоза.

Выводы:

- 1. При торможении на сухом покрытии тормозная сила значительно выше, чем на влажном, что уменьшает тормозной путь почти в два раза.
- 2. Давление в тормозных шлангах достигает 8–10 МПа при экстренном торможении.
- 3. На одно колесо приходится тормозная сила около 3000–4000 H в зависимости от покрытия.
- 4. Влажное покрытие существенно снижает эффективность торможения, увеличивая тормозной путь и требуя от водителя большей осторожности.
- 5. В реальных условиях дополнительно влияют факторы износа шин, состояния дорожного покрытия и характеристик тормозной системы.

Расчёт нагрузок на подвеску Hyundai Tucson

Данный документ представляет собой расчёт динамических и статических

нагрузок на подвеску автомобиля Hyundai Tucson при проезде неровностей дороги.

Расчёты выполнены для различных скоростей движения, с целью анализа зависимости нагрузок от скорости.

Исходные данные:

Высота неровности (h) = 0.085 м

Длина неровности (L) = 0.3 м

Масса автомобиля (m) = 1600 кг

Жёсткость подвески (k) = 25000 H/м

Ускорение свободного падения $(g) = 9.81 \text{ м/c}^2$

Рассматриваемые скорости: 30, 40, 50 км/ч

Формулы расчёта

Время прохождения неровности:

$$t = L / v$$

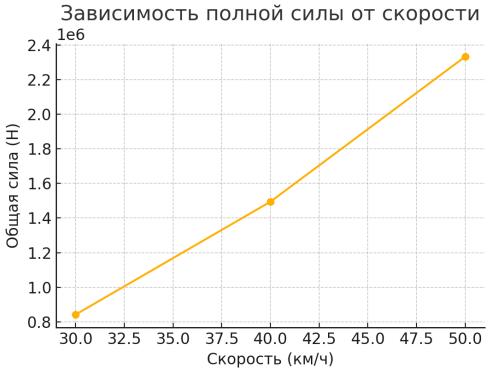
2. Максимальное ускорение подвески:

$$a = 8 \times h / t^2$$

3. Динамическая сила воздействия:

$$F dyn = m \times a$$

4. Статическая сила воздействия:

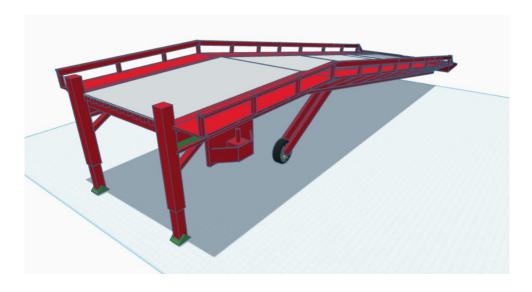

F static =
$$k \times h$$

5. Полная сила воздействия на подвеску:

$$F_{total} = F_{dyn} + F_{static}$$

Результаты расчёта:

Скорость	Ускорение	Динамическая	Полная
(KM/Y)	(M/c^2)	сила (Н)	сила (Н)
30.0	524.7	839 506	841 631
40.0	932.8	1 492 455	1 494 580
50.0	1457.5	2 331 962	2 334 087



2 - График зависимости полной силы от скорости

По результатам расчётов видно, что с увеличением скорости движения автомобиля значительно возрастает динамическая нагрузка на подвеску. При высоких скоростях динамическая нагрузка становится доминирующей по сравнению со статической, что может приводить к ускоренному износу элементов

Пля продления срока службы подвески рекомендуется снижать скорость перед

Для продления срока службы подвески рекомендуется снижать скорость перед проездомнеровностей.

2.1- Рисунок, модернизированный эстакады

ЗАКЛЮЧЕНИЕ

В ходе выполнения работы был осуществлен детальный анализ существующих решений в области проектирования и модернизации мобильных эстакад для осмотра днища автомобилей, что позволило рассмотреть их влияние на транспортные потоки, экономическую эффективность и безопасность работы. С каждым годом важность задачи реконструкции и модернизации существующих эстакад возрастает, особенно в контексте оптимизации затрат и сокращения сроков строительства. Модернизация существующих конструкций зачастую оказывается более выгодным решением, чем их полная замена, что позволяет значительно снизить капитальные затраты и время, затрачиваемое на строительство и внедрение.

Проектирование мобильных эстакад с учётом современных требований безопасности и функциональности является ключевым элементом для повышения эффективности работы в автосервисах и пунктах технического осмотра. В рамках данной работы было предложено решение по модернизации мобильной эстакады, что включало перерасчет конструктивных решений, выбор новых материалов и улучшение механизмов подъема. Параметры таких модернизированных эстакад позволяют улучшить эксплуатационные характеристики, повысить безопасность для персонала, а также ускорить процесс диагностики транспортных средств, что является важным фактором для повышения качества обслуживания в автосервисах.

Рассмотренные в работе конструктивные и технические изменения в мобильных эстакадах продемонстрировали явные преимущества, связанные с их использованием в условиях автосервисов с высокой загрузкой. Эти изменения не только повышают эффективность работы технического персонала, но и позволяют значительно сократить время, необходимое для проведения осмотра транспортных средств, что, в свою очередь, снижает затраты на обслуживание и повышает пропускную способность сервисных станций.

Необходимо отметить, что такие проекты модернизации требуют комплексного подхода, включающего в себя как инженерные расчёты, так и обоснование, что технико-экономическое является залогом реализации предложенных решений. Модернизация мобильных эстакад для осмотра автомобилей открывает возможности для внедрения более совершенных методов технического обслуживания, что способствует повышению общей безопасности снижению дорожного движения И числа неисправных транспортных средств на дорогах.

Таким образом, проведенная работа подтверждает, что модернизация мобильных эстакад является важным шагом к улучшению эффективности технического обслуживания автомобилей, снижению эксплуатационных затрат и обеспечению безопасности работы автосервисов и станций технического обслуживания.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. **Сергеев А.Ю.** Проектирование и модернизация подъемных устройств в автосервисе. М.: Инфра-М, 2016.
- 2. Коновалов В.Н., Ефимов А.Г. Основы расчёта строительных и машиностроительных конструкций. СПб.: Питер, 2018.
- 3. **Кузнецов И.М.** *Инженерная графика и 3D-моделирование в SolidWorks.* М.: ДМК Пресс, 2021.
- 4. **Сидоров А.В.** *Техническое обслуживание и ремонт автомобилей: современные технологии и оборудование.* Екатеринбург: УрФУ, 2020.
- 5. **ГОСТ Р 55889-2013.** Средства технического обслуживания транспортных средств. Эстакады и подъемники. Общие требования по безопасности. М.: Стандартинформ, 2013.
- 6. **Хазиев Р.Ф.** Расчёт и проектирование металлоконструкций с примерами на Python и MathCAD. Казань: КГАСУ, 2022.
- 7. Сарычев Е.А. Технология и оборудование станций технического обслуживания автомобилей. М.: Академия, 2019.
- 8. **Исаев В.Н.** Проектирование и эксплуатация автомобильных дорог и инженерных сооружений. М.: Транспорт, 2017.
- 9. **ISO 45001:2018.** Occupational health and safety management systems—Requirements with guidance for use. Geneva: ISO, 2018.
- 10.**Трофимов И.В.** Автомобильные подъемники и эстакады: конструкция, расчёты, безопасность. Новосибирск: НГТУ, 2023.